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Summary of Work Done Under Grant Sponsorship

The main purpose of this research has been to develop a rigorous theory and corre-
sponding computational algorithms for through-the-thickness analysis of composite plates.
This type of aralysis is needed in order to find the elastic stiffness constants for a plate and
to post-process the resulting plate solution in order to find approximate three-dimensional
displacement, strain, and stress distributions throughout the plate. This also requires the
development of finite deformation plate equations which are compatible with the through-
the-thickness analyses.

After about one year’s work, we settled on the variational-asymptotical method!
(VAM) as a suitable framework in which to solve these types of problems. VAM was
applied to laminated plates with constant thickness in the work of Atilgan and Hodges?.
The corresponding geometrically nonlinear global deformation analysis of plates was de-
veloped by Hodges, Atilgan, and Danielson3. A different application of VAM, along with
numerical reschs, was obtained by Hodges, Lee, and Atilgan?. An expanded version of
this last paper® has been submitted for publication in the AIAA Journal (Copies of these
papers have been delivered to Mr. Hinnant.) One last paper was just completed® and a
copy is included as an appendix to this report. Summaries of the progress in the various
categories we worked on follow. Technical details are in the papers.

Work on Finite Deformation of Plates

In Ref. 3, a set of kinematical and intrinsic equilibrium equations are derived for large
deflection and rotation but with small strain. This work showed that the drilling type
rotation is not an independent variable in plate theory. If it is to be included in plate
equations at all, there must be a constraint enforced between it and its definition in terms
of other plate variables. Unless this constraint is enforced, the theory including the rotation
as a separate variable is not valid. The main contribution of this paper is a complete set
of geometrically exact strain-displacement relations for large deformation of plates.

Also, the relationship between the drilling rotation and the other kinematical variables
gives new insight into the drilling moment and its role in beam-plate connectivity. An
applied drilling moment at a point on a plate is not resisted at all by the plate. Such a
moment, in order to have any physical resistance from the plate, must be applied over a
finite area. Other than this, a point drilling moment can only be resisted by a plate if
the plate model is derived from couple-stress elasticity’. Further study on this problem
was shelved, because of the need to interpret the drilling rotational degrees of freedom in
certain plate and shell finite element formulations. There is an apparent conflict between
the theoretical result of a plate having zero stiffness in response to a point drilling moment
on one hand, and the finite element results found in the literature for the response of
plates to point drilling moments. The papers in which these results appear are of several
researchers, some of whom are highly regarded by the international community and by
the principal investigator. A dialog has been initiated on this subject with some of these
people, but to date we have no resolution to this question.
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Work on Modeling Laminated Plates

By modeling here we mean the calculation of elastic constants for a two-dimensional
model based on known material constant; for the three-dimensional body. This can only
be done approximately, of course, and asymptotical methods are natural. In Ref. 2, the
“first approximation” is exactly the same as classical laminated plate theory. The “sec-
ond approximation® takes transverse shear deformation into account and is asymptotically
correct only for plates with certain restrictions in their construction. To remove the re-
strictions one must “kill” certain interaction terms in the strain energy, but the means for
doing so for general laminated plates were not given in that paper. Indeed, the means for
doing this were unknown to us at that time.

The development in Refs. 4 and 5 includes transverse shear in the “first approxima-
tion” and is stopped there. Results from this theory were compared, for the cylindrical
bending case, with results from the exact solution of Pagano for both cross-ply® and shear-
coupled® laminated plates. The resulting theory, termed a “neo-classical” theory (NCPT),
is at least as good as classical plate theory (CPT) in every case; for most cases NCPT
is superior to CPT. For example, NCPT does a much better job on calculation of plate
(two-dimensional) displacement than CPT. Also, many three-dimensional quantities are
calculated much more accurately than could be achieved with CPT. Results for several
different types of plates may be found in Ref. 5.

As pointed out in Ref. 5, there is a need to develop higher approximations in order to
(1) improve the overal performance of the theory for applications to thick plates and (2)
improve the accuracy of predicted transverse strains and stresses, especially in situations
when integration of the three-dimensional equilibrium equations cannot be accomplished,
such as in the geometrically nonlinear case.

Work on a Higher Approximation for NCPT

In order to improve the asymptotical accuracy of NCPT one needs to introduce “de-
grees of freedom™ of the normal line element which will eliminate or “kill” interaction
terms of the type identified in Ref. 2. In our work during the last reporting period we
applied Sutyrin’s eigen-principle (described in the last report) to develop a refined theory
for laminated plates of constant thickness. This theory includes CPT as a special case
and even in its most elementary extension should surpass NCPT in predictive capability.
Furthermore, because it is based on a variable number of “degrees of freedom” for the
normal line element, it should allow users of future finite elements based on this theory to
decide which of these degrees of freedom they want in their models. In principle, one can
approach the accuracy of three-dimensional elasticity to any degree desired. The theory is
completed as far as the derivation of the stiffness model based on eigenfunctions associated
with a certain Sturm-Liouville operator. A computer code has been written and validated
for the calculation of these eigenfunctions. Another code is presently under development
which will use these eigenfunctions to build the stiffness model. For the details of the
stiffness model, see Ref. 6.



Depending on what funding we can find, in the future we intend to generate results
from this new theory for the cylindrical bending problem. This will allow us to inexpen-
sively evaluate the number and types of normal line element degrees of freedom required for
accurate solutions. The last step would then be to build a prototype plate finite element.
We believe that this element would be far superior to any extant plate finite elements.
We would want to work with someone who already has experience in two-dimensional fi-
nite elements. The strength of our element would be in the theoretical foundation, not
in the finite element technology itself. Dr. Sutyrin also has devised a means by which a
discretized model based on three-dimensional finite elements can be reduced directly to
plate elements. While this should be equivalent to our present semi-analytical approach,
it may prove to be more convenient in certain contexts. .
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A Variable-Order Laminated Plate Theory
Based on the Variational-Asymptotical Method

Bok W. Lee; Vladislav G. Sutyrin;* and Dewey H. Hodgest
Georgia Institute of Technology, Atlanta, Georgia ;

Abstract

The variational-asymptotical method is & mathemat-
1ca.ltedmlqnebywhlcht.bethree—dimensionalanalysisof
laminated plate deformation can be split into a linear, one-
dimensional, through-the-thickness analysis and a nonlin-
ear, two-dimensional, plate analysis. The elastic constants
used in the plate analysis are obtained from the through-
the-thickness apalysis, along with approximate, closed-form
three-dimensional distributions of displacement, strain, and
stress. Inthspa.per a theory based on this technique
is developed which is capable of approximating three-
dimensional elasticity to any accuracy desired. This theory
is not developed using any of the usual approaches of lam-
inated plate theory. That is, it is not based on any power
seriesexpansimt.hroughthethidmms,norisitbasedon
introduction of a set of variables which describe displace-
ment in separate layers of laminated plates. Rather, the
asymptotical method allows for the approximation of the
through-the-thickness behavior in terms of the eigenfunc-
tions of a certain Sturm-Licuville problem associated with
the thidkness coordinate. These eigenfunctions contain all
the necessary mformation about the nonhomogeneities along
the thickness coordinate of the plate and thus possess the ap-
propriate discontinuities in the derivatives of displacement.
The theory is presented in this paper along with numerical
results for the eigenfunctions of various laminated plates.

Introduction

. For aerospace structures, laminated composite materi-
als provide excellent opportunities for structural simplicity
as well as elastic couplings for potential optimization of de-
sign criteria. Although plates made of such materials have
been used for some time in a variety of engineering appli-
cations, simple and efficient methods for analyzing plates
with anisocropy and nonhomogeneity are still needed. This
is partly due to rapid changes taking place in manufactur-
ing technology for composite materials and partly to ever-
increasing demands for accuracy and efficiency. Much of
what is dace is based on classical plate theory (CPT) which,
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although adequate for many engineering applications, has
well known limitations due to the Kirchhoff hypothesis.

Background

Many attempts have been made to improve classical
theary by taking into account non-classical behavior such as
transverse shear deformation and transverse normal stresses.
From the time laminated fiber-reinforced composites were
first introduced, numerous works have been published, the
objectives of which include the improvement of CPT for lam-
inated plate applications. This subject is discussed at length
in review papers!? There are two main classes of methods
for improving plate theory found in the literature: (1) Power
Series Methods: expansion of the displacement field variables
into higher-order power series in the thickness coordinate;
and (2) Layerwise Variables Methods: incorporation of sep-
arate sets of displacement variables for each layer. Both of
these methods have known shortcomings. For example, no
power series expansion can possibly render accurate results
for quantities which may possess discontinuities, such as cer-
tain components of strain and stress in laminated plates.
The layerwise variables methods rely on a significant in-
crease in the numnber of unknowns, a number which depends
on the number of layers in the plate. A third method has
received some attention in recent years, which involves an
assumed displacement field with discontinuities allowed in
through-the-thickness derivatives>*® There is no question
that this method yields excellent results in some cases, but it
lacks a systematic basis for choosing the displacement func-
tions, and it does not yield an asymptotically correct result
in general S

Ref. 6 undertook a quite different approach. It does not
involve a power-series expansion through the plate thick-
pess, nor does it involve layerwise unknowns. Rather, the
three-dimensional energy of a laminated plate was approx-
imated following Berdichevsky's variational-asymptotical
methodology” Normally asymptotical methods are employed
for analytical developments, but here such a method was
used in a sort of semi-analytical approach. Namely, the
theory leads to a Reissner-like plate theory, along with a
set of elastic constants; it also provides a set of influence
functions from which approximate three-dimensional dis-
placement, strain, and stress fields can be determined once
the plate equations are solved. The plate equations can be
solved by any method desired, such as a two-dimensional
finite element method. The analysis was restricted to lami-
nated plates for which each lamina exhibits monoclinic ma-
terial symmetry about its middle surface. Their first ap-
proximation is asymptotically correct for this case and coin-
cides with classical laminated plate theory. However, their
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second approximation is asymptotically correct only when
each element of the reduced stiffness matrix Q (see Jones®)
is constant through the thickness of the entire plate. Al-
though the theory is not asymptotically correct otherwise, it
was intended f-+ application to laminated composite plates.
The limitation of their work stems from a term in the strain
energy which was neglected. A suitable method to make
this term vanish rigorously is needed in order to make the
theory asymiptotically correct, but was not given.

A similar, but somewhat improved, approach was un-
dertaken by Refs. 9 and 10, in which the estimation pro-
cedure of Ref. 6 was slightly modified to include transverse
shear terms in the first approximation. Plates with croses-
ply stacking sequences under cylindrical bending were taken
as example problems in Ref. 9. In a later extension of this
work!? plates with arbitrary stacking sequences undergoing
cylindrical bending were taken as example problems. The
material configurations of these latter plates are not as sim-
ple as those of bi-directional plates, because of the influence
of the coupling of transverse shear terms. The distributions
of three-dimensional displacement, strain, and stress were
investigated for both cases by comparing the corresponding
three-dimensicnal exact elasticity solution!!'? The theory
of Refs. G and 10, termed the “neo-classical” plate theory
(NCPT), was shown to be more accurate than CPT for thick,
laminated plates; also, it was shown to yield results which
are somewshat better than those of the theory of Ref. 6.

Still, there were results reported for which the corre-
lation of NCPT with the exact solution is not good. For
example, when shear coupling exists, NCPT shows signif-
jcantly better correlation with the exact solution than for
the bi-directional cases. It is necessary, then, to extend the
validity of the theory to a higher approximation. Although
it is not discussed in Refs. 9 and 10, such an extension re-
quires thaz certain interaction terms vanish. These terms
are analosous to the one neglected in Ref. 6. For this reason
a method for generalization of the theory of Refs. 9 and 10
has been developed, and that is the subject of the present

paper.

Present Approach

The essence of the new approach, which guarantees dis-
appearance of the interaction terms discussed above, is the
introduction of new “degrees of freedom” into the three-
dimensiacal displacement field. We are not using the term
“degrees of freedom” in its usual sense. Here we mean plate
(i.e., two-dimensional) displacement variables which are as-
sociated with a particular deformation mode of the normal
line elemect through the thickness. The shape functions
of these new degrees of freedom are chosen as the eigen-
functiors associated with a certain Sturm-Liouville problem
formulated by Sutyrin!3 By choosing the associated warp-
ing displacement to be orthogonal to the shape functions for
each of the new degrees of freedom, the displacement field is
uniquely defined. The choice of shape functions from these

eigenfunctions guarantees that any additional warping in-
duced by the new degrees of freedom is of a higher order rel-
ative to the new degrees of freedom themselves. The order of
these new degrees of freedom relztive to the strain depends
on the loading and the matericl constants. After obtaining
the eigenvectors by using a one-dimensional finite element
method, the plate elastic constants can be obtained through
the variational-asymptotical method. Utilizing global defor-
mation equations along with this resulting plate constitutive
law, we will complete the formulation of the theory.

In this paper we first provide the details for the kine-
matics of plate deformation in terms of classical plate dis-
placement variables and the new degrees of freedom. The
strain field needed to develop a geometrically nonlinear plate
theory is written in terms of these displacement variables.
The small parameters are identified as &, the maximum
strain in the plate, and 4, where h is the plate thick-
ness and £ is the characteristic length over which the de-
formation varies in the deformed plate. The variational-
asymptotical method is then used, along with a Ritz-type
approximation of three-dimensional displacement variables
in the through-the-thickness coordinate, to approximate the
three-dimensional strain energy of the plate with a function
of two-dimensional quantities only. The above-mentioned
Sturm-Liouville problem is identified, the eigenfunctions of
which guarantee the warping to be of higher order than
any retained degree of freedom if they are chosen as the
shape functions for the retained degrees of freedom. The
two-dimensional strain energy function is then given as a
function of material constants and eigenfunctions.

We are able to calculate the exact solution for the
Sturm-Liouville problem only for one- and two-layer plates.
Thus, it was necessary to develop an approximate method
of solution so that the plate theory could be finalized. We
present a finite element analysis in one dimension (through
the thickness) which we use to solve the Sturm-Liouville
problem based on the shape functions of Ref. 14. Eigenval-
ues and eigenfunctions for various laminated plates obtained
by a one-dimensional finite element method are presented
and, when possible, compared with the exact solution. Ap-
plication of the theory will be addressed in a later paper.

Theoretical Development

The objective is to derive a strain energy function of a
plate in terms of two-dimensional quantities only. It can be
done only if some small parameters are present. We suppose
that the parameters mentioned above, £ and %. are small.

Three-Dimensional Formulation

To begin we will formulate a three-dimensional devel-
opment which shall be considered the exact solution to the
plate problem.

Undeformed State of Plate A typical point in the unde-
formed plate can be located by introducing a Cartesian coor-

dinate system z; in such a way that z,: {z1, T2} = z denotes



lengths al:c.z orthogonal straight lines in the mid-surface of
the undefzrmed plate, and z3 = y = h{ is the distance in
the normz! direction, where —3 < { < 3. Throughout the
analysis, Greek indices assume values 1 or 2; Latin indices
assume valoes 1, 2, and 3; and repeated indices are summed
over their ranges.

The spatial position vector £{z;,z2,¥) to an arbitrary
point in the undeformed plate can be written as

f(z,y) = r(z) + yb(z) 1)

where r(z) is the spatial position vector of points on the
mid-surface of a plate and b(z) is the unit normal vector.
We will alse need notation for unit vectors b, = ﬁ"; which,
together with b, form an orthonormal triad.

Since the variable y (and ) is chosen specifically so that
the spatial position vector r to a point on the reference mid-
surface is the average position of points along the normal
line at a particular value of z; and z3. then

r(z) = (£(z.¢)) 2

where the notation

@ity ©

o) = — edy = L )
hJ-y -

is used tk-oughout the paper.

Deformed State of Plate Without any restrictions the posi-

tion vecter R(z;, Z2,y) to an arbitrary point in the deformed
plate can be represented by

R(z,v) = R(z) + yB(z) + ta(z,{)Ba(z) @

where R/x) is the position vector of points on the deformed
reference surface, Ba(z): {Bi(z), Ba(z), Ba(z) = B(z)}
is the reference orthonormal triad with vector B being or-
thogonal to the deformed reference surface, and v, (, () are
componezzs of the general warping displacement of an arbi-
trary potxt in the deformed normal line, consisting of both
in- and out-of-plane components so that all possible defor-
mations z-e considered.

The warping v, could not be defined uniquely as a func-
tion of ¢ with an arbitrary choice of R(z) unless they are
subject tz the constraints

{vn(z,()) =0 (5;
which means that
R(z) = (fi(z. ()) (6)

The crthogonality of vector B to the reference surface

means
R, -B=0 (7

where the notation ( ) o denotes the partial derivative with-
respect to z,.

In order to eliminate the arbitrary rotation of vectors
B, around normal B we impose the following constraint

B, -R2=B;-R, (8)

A schematic of the plate deformation is shown in Fig. 1.

Deformed State
'-(‘r x}';’l(!l"‘i)

Fig. 1: Schematic of plate deformation
(u is the displacement of the reference surface)

Thus, Eq. (4) provides a convenient way to represent
the arbitrary function R(z,y). The orientation of the triad
B, is now specified uniquely. )

Strain Field As shown in Ref 6, under the condition of
small local rotation, the Jaumann strain components can be
arranged in a 3 x 3 symmetric matrix I'*, given by

r*=3x+xn-1I
Xij = D¢ Bz,

where I is the 3 x 3 identity matrix.

Substituting Eq. (4) into the Jaumann strain, Eq. (9),
one can express the strain field as a 6 x 1 column matrix
T = |}, 20§, Ty 213 2735 T3,)7 so that

(10)

1
=zl";,v'+I‘¢'y+[‘lv',



where (o"sg:—.a.ndmatrimrh,n and I; are
0 0 O I ¢l
000 11:[0 0]
0N 0
=11 00
010
0 0 1] Te=[h ]
(11)
1 00 0 0 O
010 1 0O
0 00 010
L=lg01] =loo0 o
0 00 0 01
0 00 0 0O
€ v
7={hK} u,={vv;} (12)

Here we will introduce the two-dimensional strain measures
for inplane stretching and shear

R, B, -1
€= R'I'B3+R‘2'B1
Rs-By-1

and the two-dimensional strain measures for bending and

(13)

twist
BJ'BI
K= B_l'Bg-i-B'g-Bl (14)
B2 -B;
The small parameter £ can be now specified as
e=max]vyf (15)

A few ponlinear terms in the strain field, which couple v
and v, have been neglected in Eq. (10) because the physically
linear plate theory is considered. The form of the strain field
is of great importance because it is now linear in v, v/, and
U

This is the only point where £ as a small parameter is
taken into account.

Strain Erergy of Plate The strain energy density per umit
area for a plate can be written as

U= (7 DT) (16)

where D is the 6 x 6 symmetric material matrix in the B,
basis. -

The three-dimensional Jaumann stress Z, which is con-
jugate 1o the Jaumann strain I is

Z=Dr (17)

Basic Three-Dimensional Problem

The basic three-dimensional problem can now be rep-
resented as the following minimization problem

f U (7(:)3 "‘J(Ia ()v v.:(zv C)) hdxld-'r2 +
(18)

+terms with external forces — min

where the minimum should be found with respect to three
arbitrary functions R(z), through which (z) is calculated,
and to three functions v, (z, ) which are subject to the con-
straints of Eq. (5).

Note that the orthonormal triad B,, is not an inde-
pendent variable, since it is a subject to the constraints in
Eqgs. (7) and (8). It is completely determined by the function
R(z).

Dimensional Reduction

Splitting of the Problem Now the functional space of all the
admitted functions R(z,y) is split into sublayers with a
choice of the z-dependent functions R(z). In each layer
the functions v,(z,() are arbitrary under the constraint in
Eq. (5).

We can solve this problem in two steps. First we are
going to find functions vn(z,({) for any prescribed choice
of functions R(z). As a result, we will have v.(z,() as a
functional of R(z) and ¢, and the functional, Eq. (18), will
become dependent only on R{z). That functional will give
us a two-dimensional plate theory. The second step is to
solve that theory.

Since the energy density U depends not only on func-
tions v, (2, ¢) but also on their derivatives with respect to z,
then the result of the first step will be very complicated (it
will contain a non-local dependence on R(z) in the general
case) and cannot be obtained in an appropriate form unless
we take advantage of some small parameters.

Small Parameters Let us consider the situation where pa-
rameters h, £ and £ are present. Since no coefficient matrix
of T', Eq. (11), depends on these parameters, it is clear that
the first term of the expression for strain, Eq. (10), has or-
der ll,‘;’ll, the second term has order €, and the third one has
order 131, The third term has order § times that of the
first. We should neglect this as a higher order term in the
first approximation if we are going to expand the solution
with respect to the small parameter l} In the future, this
important circumstance allows us to avoid the presence of
derivatives of unknown functions v,(z,() with respect to z
in the problem for any approximation and, hence, to solve
it in an appropriate form.

Since our main problem has become linear with respect
to the unknowm functions v,(z,¢) and the two-dimensional
strain measure v, the smallness of parameter £ does not



need to be consdered any more. This fact has already taken
into account {sze above under Strain Field). We will expand
the warping *<(z,() as a series with respect to the small
parameter 4 ozly. In the absence of other small parameters,
expansion in % is the same as expansion in h. That is why
we can consider h to be the small parameter in spite of its

dimension.

Discretization

The problem may be solved numerically by discretizing
with respect to the thickness variable (. Now the unknown
functions ua(x,{) are represented as the product of a matrix
of shape functions S(¢) and a column matrix of nodal values
of v(z, ), which we will denote V

v(z,¢) = S(OV(=) (19)

Substituting the discretized unknown function in
Eq. (19) into the energy density, Eq. (16), while taking into
account the strain, Eq. (10), one obtains

U = (3)’VTEV+ (3) 2 VT [Drev + DasVal +

(20)
+(1) ('.’TDa‘Y + 2 V,zTD:¢7 + ‘/,zTDsz,z)
in which the following definitions are introduced
E2 (57" DI 1)
Dw. £ (ms1"DILY)
Di. 2 (051" DITe 51)
(21)

D 2 (L] DI])
D.. 2 (s DILI)
D.. & ({nS)" DI S])

Classical Considerations

According to the variational-asymptotical procedure, in
order to get the next approximation, one should retain only
the leading energy term with respect to the small parameter
that contains the unknown functions and the leading inter-
section term between the unknown function and the rest of
the functional {for more details see Ref. 7).

We are keft with the following expression

2
G) VTEV+ G) 2 VT Dhery (22)

This function should be minimized with respect to variable
1 under the constraint, Eq. (5), which is transformed to the
following condition after discretization

VTHU,=0 H = (STS) (23)

where ¥, is matrix with three columns, each corresponding
to one of the constraints of Eq. (5). The set of columns ¥
are determined by the kernel (null-space) of matrix E (for
more details see Ref. 7). This means
E¥g=0 (24)
Let us suppose that the set of columns ¥ is normalized in
such a way that

VLHU =1 (25)
The Euler equation for the problem posed by Eqgs. (22)

and (23) is
1

( )EV—I'- Drey=HVup {(26)

h
where y is the column matrix of Lagrange multipliers for the
constraint in Eq. (23). By pre-multiplying Eq. (26) by vy
one can prove that

pu=YT,Dny (27)
Now the equation for V, Eq. (26), is rewritten as
1
(z)EV= —(I = HY;¥T) Dy (28)

Since E has a kernel, E~! does not exist. However, the
pseudo-inverse of E, E,, satisfied the following relations

EE} =1— HU VT,

29
ELE =1-V,VLH (29)

ELEE} = EY,

can be found (see the Appendix) and the solution of Eq. (28)
can be represented as

= —hE}Dpey (30)

Substituting the solution, Eq. (30), into the discretized
strain energy density, Eq. (20), and keeping only terms with
the lowest order, which are equal to h® = 1 one obtains

2U =T Ay (31)

with A
A= Dzz - [thlTE:l[D'ul (32)
The third property, Eq. (29), is taken into account here.
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This is the identical to the classical result for the strain
energy of laminated plates.

New Degrees of Freedom

In order to make our plate functional more flexible with
respect to the variable z, let us introduce the new unknown
plate functions such that

Viz) = % q(z) + W(2) (33)

where ¢ is a column matrix of several new unknown func-
tions, ¥, is a matrix, each column of ‘which represents a
¢-shape form associated with one of the new unknown func-
tions g(x), which will be named “new degrees of freedom,”
and W is the new warping to be found.

We will suppose that matrix ¥, is normalized in such
a way that
VTHY =1 (34)

The following constraint for W will make the splitting,
Eq. (33), unique
WTHY, =0 (35)

The order of functions g(z) with respect to h may be
arbitrar_vanditwillbesupposedtobeequalwh°51.

As a (-shape form of new degrees of freedom let us take
eigenvectors of matrix E which correspond to the several
lowest nou-zero eigenvalues. Such a matrix ¥, will satisfy
the following equation

EY, = HY A, (36)

where A, is a diagonal matrix of eigenvalues

A O 0
0 X --- O

Ag=1. + .. (37)
0 0 AN,

The constraint of Eq. (23), which still might be satisfied
by W, can be combined with the constraint of Eq. (35) after
introducing the matrix ¥, = [¥.,Y, ] in such a way that

WTHY, =0 (38)

Analogously, Eq. (36) can be rewritten as
EY, =HY, A, (39)

where matrix A, is

0 00 O 0
000 O 0
000 O 0

Ac=10 0 0 X 0 (40)
000 O AN

Calculation of Strain Energy

Let us assume that we have the correct expansion of V'
through order h?

V="Vo+hVi + i’V; (41)

where V, denotes the first term of Eq. (33)
Vo=Y¥q (42)

The vector Vj satisfies the equation

EVo=HY Ay (43)

and vectors V; and V5 have to satisfy the constraint found

If we have an asymptotically correct expansion for
Eq. (41), we can calculate an asymptotically correct energy
for order R =1

1 2
w=(3) WEVe+
+(}) 2W LB + Dacr+ DaVo] +

+(O{VTEV; + 2 VJEVo+
+ 2 VT [Dhey + Das Vo il + 2 Vi, DanVo+
Y D+ 2 VL Dzev + Vo D22 Vo2 }

(44)

The underlined terms are equal to zero here because of
Eq. (43) for V; and the constraint of Eq. (38) for V; and V3.
This means we do not need to know the second approxima-
tion for V (i.e., V3) in order to calculate the energy for order
K.

We shall minimize the functional

VTEV; + 2 VT [Daer + (Drz — D2a)Vos) (45)

in order to find V;.
The notation D}, means
D= [(Dh:x)T (Dhn)T] (46)

which comes from 2 V[T D, ,V, in the fourth line of Eq. (44)
after integration by parts with respect to z; and 2.
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The Euler equation for the fimctional of Eq. (45) is
EV: + Doy + (Dhs — Dia)Vo. = HUupu  (47)
where p, is the Lagrange multiplier which enforces the con-
straint in Eq. (38).

Applying a procedure similar to the one used for the
classical case we can calculate the Lagrange multiplier

My = ‘I":r [D;u'y + (DL: - D;h)VO.z] (48)
and represent the solution of Eq. (47) by
Vi = B} [Doey + (Daz — Dia)Vo,] (49)
where the matrix E} can be found with the following prop-
erties
EE} =1-H¥ ¥7
EfE=I1-YYH (50)
EJEE; =E

See the Appendix for an explanation of how to calculate
the matrix E}.

Substituting this expression into the energy, Eq. (44),

one obtains

1\? 1
2 = (.};) V& EVy + (X) 2V [Drev+ DreVou) +

f*' (1){7TAu’7 + 2 I’O’::PSE‘Y + Vo’{;Pszo,z}

(51)
where the following notations are introduced
Ace & Do, — [DuJTE [Dad] ‘
Pzt é D:z - [Dh: - D;I’JTE: [Dh.e] (52)
Pzz g Dzz e [th - :I-.}TE: [Dh: - D;h]

Finally, after substituting the expression for Vo,
Eq. (42), the strain energy can be wTitten as

1Y ] Ae Au A 2
=24 1q A Ax Aps | {79 (53)
qdx A:( <1z g -432 q,:

where
A&
Age = \IquE\I',, =A;
s -
A, = [‘IquDh,,\I/q V. Das, v, 1= Aq,T
a
Age S W Dne = Acg” (54)

A a [‘I’:.Pn!x‘pﬂ Q;TPXISI‘I’G ]
= \IIqTszzl\IIq \}"TP,’,’\E’

A(Z é[Pu:x"l’q Pz:;‘{}:4 zeT

Eq. (53) represents the strain energy of a laminated plate
undergoing deformation which is constrained only in the
sense that the strain is small. Displacement and rotation
of the normal line element appear nonlinearly in the expres-
sions for . On the other hand, tl.e new degrees of freedom
give rise to simple linear Euler equations. Since the dis-
placement field is now completely specified in terms of v, q,
and g, it becomes a simple matter to recover strain and
stress throughout the plate by use of Eqs. (10) and (17).
The classical plate energy can be obtained from Eq. (53)
after it has been minimized with respect to variables ¢ with
partial derivatives ¢ , being equal to zero.

Numerical Results

Exact solutions for the Sturm-Liouville problem can be
obtained with symbolic manipulation software, but we were
only able to carry this out for one- and two-layer plates.
Thus, we turned to a finite element solution. In Ref. 15
results for Sturm-Liouville problems with discontinuous co-
efficients were obtained which agree quite well with the ex-
act solution. Our finite element method is similar except
that the orthogonal Jacobi-polynomial-based shape func-
tions presented in Ref 14 are used. This means that our
finite elements have interior degrees of freedom which can
be added without generation a new element geometry. This
mesh through the thickness can be as fine as we wish, but
we must at least have element breaks where discontinuities
exist. The highest derivatives invoved in the problem are
first derivatives with respect to ¢, and thus C? continuous
shape functions can be used. See Ref. 14 for details.

In this section we present some numerical results for the
solutions of the Sturm-Liouville problem, compared when
possible with the exact solution. We start with an error
analysis of the eigenvalues for the two-layer case, and we
conclude with the eigenfunctions of one-, two-, and four-
layer plates. The four-layer results include both a symmetric
plate and a non-symmetric cross-ply plate.

For the purpose of discussion only, we align our coordi-
nate axes with z; along the length (“longitudinal inplane”)
and z, along the width (“lateral inplane®); these are not
necessarily aligned with any material axes. For our exam-
ples, we choose a fiber reinforced composite material which
has the following material properties

EL=25x10Ppsi  Er = 10%psi
Gir=05x10%psi  Grr = 0.2 x 10%psi
vir =vrr = 025

where signifies the direction parallel to the fibers and T the
transverse direction. These properties, along with a ply an-
gle, allow the calculation of the matrix D. Note, however,
that in the example problems and indeed in all laminated
plates, certain terms in D will vanish. Our theory does
not require any special terms in D to be zero. Because
of the vanishing terms in the example problems, there is
no coupling between out-of-plane and inplane displacement
components. Thus, certain modes will be entirely inplane



and others entirely out-of-plane. Alko, since Dgg is constant
through the thickness for such plates, the thickness mode
with the lowest eigenvalue for all the examples will be a sine
function.

As examples we consider the following four lay-ups:

[15°] “oone-layer”

[~15°/15°)  “twolayer”
[30°/ - 30°),,,,  “fourlayer”
[0°/90°/0°/90°]  “cross-ply”

where the words in quotation marks indicate the terms we
use to designate the plate under consideration.

Eigenvalues for Two-Layer Plate

All of the plates have three zero eigenvalues. These
correspond with the classical “degrees of freedom” of the
normal line element, the average displacement components
of that line element. The eigenvalues appear in the above
equations as well, and the size of these eigenvalues may have
a bearing on whether the associated degree of freedom is
an important one. Our present understanding is that the
smallest eigenvalues are the ones of interest, but this must be
confirmed by application of the theory with different choices
for the degrees of freedom. Here we will present a few of the
smallest non-zero eigenvalues for the two-layer plate and the
analysis of the error, since the exact solution is available for
this case.

In Table 1 the first four nonzero eigenvalues are shown
for the two-layer plate, both from the exact solution and
from our finite element approximation with four elements
(M=4). The order of the shape functions is varied by chang-
ing J, the number of Jacobi polynomials used to construct
the higher-order shape functions. The crudest element has
J=0, resulting in linear shape functions. Results are shown
for J=1 (quadratic shape functions) and J=2 (cubic shape
functions). It is seen that all of the finite element results are
very close to the exact solution. Furthermore, the higher-
order shape functions greatly improve the accuracy.

Numerical Results (M = 4)
J=0 J=1 J=2

Exact

2.04599617

2.15317042

204710246

2.04600108

429843523

4.54270883

430275294

4.29845836

8.87418665

10.84944490

8.9377316

8.87567158

10.57173730

11.12555748

10.57715155

10.57176142

Table 1: Eigenvalues for 2-layer plate

A more precise analysis of the error for the lowest
nonzero eigenvalue is presented in Figs. 2 and 3. In Fig. 2
the relative error versus the size of the eigenvalue problem
is essentially a straight line on a log-log scale if J, the num-
ber of Jacobi polynomials in each element, is held constant.
This means that the size of the matrix increases as the num-
ber of elements through the thickness is increased. In Fig. 3

the relative error versus the size of the eigenvalue problem is
shown for the case when the mesh is held constant; here the
size of the matrix increases as the order of element shape
functions is increased. We will present our results below for
the eigenfunctions based on elements with cubic shape func-
tions. To analyze plates with a large number of layers, the
number of elements must be increased. If only the higher-
order functions were used, such analyses could become ex-
pensive. However, as seen in these plots, an increase in the
number of elements, which would be required because of
discontinuities in the properties between layers, would bring
the error down without the need of higher-order shape func-
tions.
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1E2, \
153! J=0

Relative Error
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Fig. 2: Relative error for A; of 2-layer
plate versus size of matrix E for constant J
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Fig. 3: Relative error for A; of 2-layer
plate versus size of matrix E for constant M

Eigenfunctions for One-Layer Plate

Eigenfunctions for the smallest four nonzero eigenval-
ues of the one-layer plate are presented in Figs. 4a — 4d.
The finite element results, shown as solid lines, were ob-
tained using 2 elements with cubic shape functions; and the
exact solution, shown as dashed lines, is indistinguishable
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from the finite element results in the plots. Fig. 4a shows
the eigenfunction for a transverse shear mode dominated by
the lateral inplane displacement, while Fig. 4b shows the
corresponding one dominated by the longitudinal inplane
displacement. Note in Fig. 4a the two displacement compo-
nents are of opposite sign while in Fig. 4b they are of the
same sign. Fig. 4c shows a higher mode of the same type . tcnene
as shown in Fig. 4a. The fourth nonzero eigenvalue has an 2
eigenfunction with only out-of-plane displacement. We note : ":1
the smooth character of these functions, which are close to 1 es
sines and cosines. Plate theories based on expansion of the ;

displacement in power series or trigonometric should provide i
excellent predictive capability for homogeneous plates such s

as this one. = X %] 7% QX |
N Thickness

Fig. 4a: A= 1.97392088
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Eigenfunctions for Two-Layer Plate

Eigenfunctions for the smallest four nonzero eigenvalues
of the two-layer plate are presented in Figs. 5a — 5d, along
with the corresponding eigenvalues. The finite element re-
sults were obtained using 4 elements with cubic shape func-
tions, and the exact solution is again indistinguishable from
the finite element results in the plots. Fig. 5a shows the e L
eigenfunction for a transverse shear mode dominated by the
lateral inplane displacement. Fig. 5b shows the correspond-
ing mode having more longitudinal inplane displacement,
but not so strongly dominated by it. Fig. 5c shows a higher
mode of the same type as shown in Fig. 5a. The fourth
ponzero eigenvalue again has an eigenfunction with only out- sl
of-plane displacement, as shown in Fig. 5d. 3 e R

Thickness

Although the displacement functions shown in Figs. Sc . v

and 5d both appear to be smooth, the displacement has a Ijlg' 4b: A= 4.9348022
discontinuous slope in both Figs. 5a and 5b, in sharp con-
trast to results for the one-layer plate. Power series approx-
imations through the entire thickness of the plate would not
be able to capture this behavior, but the above theory shows
that the warping induced by this type of displacement is a
higher-order effect. Thus, a plate theory with these degrees ¥ B % B
of freedom should be a noticeable improvement over classical ’ Thickness

theory. Furthermore, such a theory should be an improve-
ment over the theory of Refs. 9 and 10.
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Eigenfunctions for Four-Layer Plate

Eigenfunctions for the smallest four nonzero eigenval-
ues of the four-layer plate are presented in Figs. 6a — 6d. RS
These results were obtained using 8 elements with cubic . _
shape functions. Figs. 6a and 6b show the eigenfunctions Fig. 4c: A= 7.89568352
for coupled transverse shear modes, the former having more
lateral inplane displacement while the latter has more longi- §
tudinal inplane displacement. Fig. 6c shows a higher mode .';
of the same type as shown in Fig. 6a. The fourth nonzero £
eigenvalue again has a smooth eigenfunction with only out- s
of-plane displacement, shown in Fig. 6d, as expected. Again, 3 T
in sharp contrast to results for the one-layer plate, the dis- Thickness
placement has discontinuous slopes in Figs. 6a — 6c. The Fig. 4d: A= 10.57173733
SY:ldmth of the plate is exhibited in the symmetry of the Fig. 4: Eigenfunctions for 1-layer plate
modes.
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Fig. 6: Eigenfunctions for 4-layer plate
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Fig. 7: Eigenfunctions for cross-ply plate

Eigenfunctions for Cross-Ply Plate

Eigenfunctions for the smallest four nonzero eigenval-

_ ues of the cross-ply plate are presented in Figs. 7a — 7d.

11

These results were obtained using 8 elements with cubic
shape functions. Figs. 7a and 7b show the eigenfunctions
for coupled transverse shear modes (with the same eigen-
values), one having more lateral inplane displacement while
the other has more longitudinal inplane displacement. The
third, fourth, and fifth nonzero eigenvalues are also the same.
The eigenfunctions corresponding to two of these eigenval-
ues are shown in Figs. 7c and 7d. The out-of-plane mode
is shown in Fig. 7c, having the same smooth eigenfunction
as before. Fig. 7d shows a higher mode of the same type
as shown in Fig. 7b. The other eigenfunction for this triple
root (not shown) is a higher mode of the type as shown
in Fig. 7a. Again, in contrast to results for the one-layer
plate, the displacement has discontinuous slopes - this time
in Figs. 7a, Tb, and 7d. The lack of symmetry of the plate
is exhibited in a lack of symmetry in the inplane modes.

It should be clear that choosing a priori displacement
fields which exhibit the character of the inplane modes
shown in Figs. 4 — 7 would be virtually impossible. They
have the appropriate symmetry or asymmetry, as well as the
discontinuities which reflect the layup.

Concluding Remarks

A geometrically nonlinear theory for laminated plates
is presented based on a combination of the variational-
asymptotical method and the method of Ritz. The dis-
placement field is described in terms of the average dis-
placement of the normal line element and a small number
of additional functions of the in-plane coordinates of the
plate. The through-the-thickness shape functions for these
new “degrees of freedom” are not analytic functions for ar-
bitrarily laminated plates. Rather, they are eigenfunctions
of a certain Sturm-Liouville problem based on the thickness
coordinate of the plate. Unlike power series formulations,
this allows for the correct treatment the known jumps in
the stress and strain fields. Unlike layerwise variable theo-
ries, the present theory has only a small number of variables
in addition to those found in classical plate theory, 8 num-
ber which does not depend on the number of layers in the
plates. Additional equilibrium equations for the plate the-
ory associated with the new degrees of freedom are simple,
linear equations — even for a large-displacement theory.

Since analytical solutions of the Sturm-Liouville prob-
lem are limited to one- and two-layer plates, an approximate
finite element solution was obtained. Results obtained for
these shape functions are presented for a variety of lami-
nated plate configurations. These results agree well with
available exact solutions. In the future numerical studies
will be conducted in order to determine how many and which
types of degrees of freedom produce the best all-around plate
theory.
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Appendix

Calculation of Pseudo-Inverse Matrix

Let columns of matrix ¥ be the set of all eigenvectors.
In other words the matrix ¥ satisfies the following system
of equations
E¥ = HYA
VYTHY =1

where the diagonal matrix of eigenvalues A is

00 0 0 0 0 0
000 0 0o o 0
000 0 o o 0
000 X 0o 0 0
A=t P o7 : :
000 0 --- Ay, O 0
000 0 0 An41 0
0 00 0 0 0 AN_3 ]

where N is the dimension of matrix E.

Now, it is easy to check that Eq. (50) and the following
expressions are true

E=HVAYTH
vl = H!
E‘+=‘I’A:1\I1T
where Al is
[0 0 0 O 0 0 0 7
0000 0 0 ]
0 00FO 0 0 0
0 00090 0 0 0
a_ |t : :
A 0000 ---0 0 0
0000 0 EL: 0
j0 0 00 --- 0 0 -x—'}:_




